PII: S0040-4039(96)01817-5

Sulfoxide-Controlled SN2' Displacements between Cyanocuprates and Epoxy Vinvl Sulfoxides.¹

Joseph P. Marino,*a,2 Laura J. Anna,^a Roberto Fernández de la Pradilla,*b,2 María Victoria Martínez,^b Carlos Montero,^b Alma Viso,^c

^aDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA. ^bInstituto de Química Orgánica, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain. ^cDepartamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain.

Abstract: Readily available enantiomerically pure epoxy vinyl sulfoxides 10-13 and 15 undergo highly regio-and stereoselective S_N2' displacements with alkyl cyanocuprates. The sulfinyl auxiliary controls the anti-syn stereochemistry of the process. Copyright © 1996 Elsevier Science Ltd

The nucleophilic S_N2' opening of vinyl oxiranes by organocopper reagents is a powerful method for the stereoselective construction of carbon-carbon bonds.³ The high degree of regio- and stereocontrol (*E-Z* and *anti-syn*) generally associated with this methodology even for acyclic cases has led to a sustained level of interest in these processes.⁴ In connection with our previous involvement with studies addressing sulfur-directed S_N2' displacements,⁵ particularly those of acyclic mesylates A (Scheme 1),^{5b} we envisioned that the related enantiomerically pure epoxy vinyl sulfoxides C could be useful substrates for effecting allylic displacements with organocopper reagents to produce allylic alcohols D which maintain the versatile vinyl sulfoxide functionality. In this paper we report our preliminary results on this subject which have revealed that the facial selectivity of the process is primarily controlled by the chiral sulfur atom.

After briefly evaluating several routes to oxiranes C, we found that the lithiation of enantiomerically pure vinyl sulfoxides 1 and 2 (Scheme 2)⁶ and subsequent highly anti-selective condensation with racemic 2-chlorohexanal,⁷ followed by chromatographic separation and recrystallization led to pure chlorohydrins 4, 5 and 6, 7 (33-38% of each anti-diastereomer, ca. 1:1 ratio) which were transformed into epoxides 10-13 by base induced cyclization (n-BuLi, THF, -78 °C to rt, 78-89%). Alternatively, lithiation of 3, condensation with (2S)-2[(tert-butyldimethylsilyl)oxy]propanal⁸ (anti:syn, 83:17, 84%) followed by chromatographic separation of 8 and 9 and epoxide formation (1. Ms₂O, pyr, 2. n-Bu₄NF, THF, 60-70% overall) produced oxiranes 14 and 15.⁹ From these substrates we selected 10-13 and 15 for our initial studies.

Scheme 2 and Table 1 gather our preliminary results on these displacements. At the initial stage of this project, the reactivity of epoxide 10 with McCuCNLi was examined and the desired displacement adduct 16 was obtained with remarkable yield and stereoselectivity (96:4, entry 1). In view of this promising result, diastereomeric substrate 12 (entry 2) was subjected to identical reaction conditions to produce a good yield of an inseparable 15:85 mixture of displacement products. It should be pointed out that the NMR spectral features of the major products 16 and 19 were found to be strikingly similar and this suggested that these products were isomeric exclusively at the allylic hydroxyl center and, therefore, that a different anti-syn stereochemical pathway was operative for each diastereomer.

Scheme 2

Table 1. Reaction of Cyanocuprate Reagents with Epoxy Vinyl Sulfoxides.

Entry	Substrate	\underline{RCu}^a	Products (anti-syn ratios) b		<u>Yield</u> ^C
1	10	MeCuCNLi	16 (96)	17 (4)	91%
2	12	MeCuCNLi	18 (15)	19 (85)	68%
3	12	EtCuCNLi	-	20 (100)	70%
4	11	n-BuCuCNLi	21 (100)	-87%	
5	13	n-BuCuCNLi	22 (9)	23 (91)	78%
6^d	13	n-BuCuCNLi	22 (4)	23 (96)	-
7	15	MeCuCNLi	24 (93)	25 (7)	70%

^a Reactions carried out with 6 equiv of organocuprate reagents in Et₂O, from -78 °C to rt. ^b In parentheses ratios of products measured by integration of the 300 MHz ¹H NMR spectra of crude reaction mixtures. ^c Unoptimized combined yields of pure products. ^d Reaction carried out at -100 °C; the yield was not determined.

The scope of the process was then briefly examined both with respect to the use of different alkyl cyanocuprates and with respect to the range of substituents on the vinyl epoxide. The results obtained (entries 3-5) are very similar to those described above. Entry 6 shows that the selectivity of the process may be further improved by lowering the reaction temperature. Finally, the influence of the oxirane geometry on the outcome of the displacement was also studied and comparable results were found (entry 7). It should be mentioned that the displacements of epoxides 12 and 13 (SRS_S) configuration were generally less selective than those of the corresponding diastereomers. In addition, slightly lower yields were also obtained due to the appearance of other by-products.⁹

To establish conclusively the different *anti-syn* stereochemical pathway suspected for these diastereomeric oxiranes, we prepared the p-nitrobenzoates of 16 and 19, 26 and 27 respectively under standard conditions (Scheme 3). On the other hand, the treatment of 16 with p-nitrobenzoic acid, under Mitsunobu conditions, 10 led to a good yield of p-nitrobenzoate 27, of identical physical and spectroscopic data to that obtained from 19 as described above.

The general structure and geometry of these adducts could be established readily from their ¹H and ¹³C NMR spectral features including differential NOE experiments. The relative stereochemistry of the newly created allylic chiral center was deduced by comparison of the spectra of these adducts with those of related compounds previously characterized by spectroscopic and crystallographic techniques. A particularly distinctive feature found is that the methyl group attached to the allylic position appears substantially more shielded in major diastereomers 16 and 19 (0.63 and 0.65 ppm), as well as in p-nitrobenzoates 26 and 27

distinctive feature found is that the methyl group attached to the allylic position appears substantially more shielded in major diastereomers 16 and 19 (0.63 and 0.65 ppm), as well as in p-nitrobenzoates 26 and 27 (0.59 and 0.52 ppm), than in 17 and 18 (1.05 and 1.09 ppm); this is in agreement with the shifts of 0.56 and 1.11 ppm observed for 28 and 29 (Scheme 3), of known relative configuration. 5b

The stereochemical outcome of these additions may be rationalized in terms of a "matched" situation for 10, 11 and 15 in which the sulfinyl and vinyl epoxide functionalities display cooperative stereodirecting capabilities. On the other hand, the remarkable reversal of facial selectivity found for 12 and 13, affording 1,4-syn products, suggests a "mismatched" situation in which the sulfinyl group can override the highly anti-selective stereochemical pathway associated with SN2' displacements of vinyl oxiranes with organocuprates. ¹¹ It should be pointed out that to the best of our knowledge this reversal of selectivity, under identical reaction conditions, is unprecedented and underlines the extremely powerful chiral controller character of a readily available and synthetically useful sulfinyl funtionality. ^{12, 13}

In conclusion, we have shown that enantiomerically pure epoxy vinyl sulfoxides, readily available by two short and convergent routes, undergo S_N2' displacements with alkyl cyanocuprate reagents with high regio- and stereoselectivity. The *anti-syn* stereochemical course of the process is primarily controlled by the chiral sulfur atom. Further studies to define the scope of this novel finding and apply the resulting hydroxy vinyl sulfoxides in synthesis are underway in our laboratories.

Acknowledgment. This research was supported by NIH (CA 22237) and DGICYT (Grants PB93-0154 and PB94-0104). R.F.P. thanks Professors B. Rodríguez and S. Valverde for encouragement and support. We thank the CAM for a doctoral fellowship to C.M.

References and Notes

- 1. Taken in part from the M.S. Thesis of M.V.M. and Ph.D. Theses of L.J.A. and C.M. Presented, in part, at the 6th Brazilian Meeting on Organic Synthesis, Sao Paulo, September 5-9, 1994.
- Professor J. P. Marino, Fax: 1-(313)-764-8815. E-mail: JPMARINO@UMICH.EDU.
 Dr. R. Fernández de la Pradilla, Fax: 34-(1)-564-4853. E-mail: RIF@CC.CSIC.ES.
- 3. For reviews see: (a) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41,135-631. (b) Marshall, J. A. Chem Rev. 1989, 89, 1503-1511.
- (a) Nagumo, S.; Irie, S.; Akita, H. J. Chem. Soc., Chem. Commun. 1995, 2001-2002. (b) Clive, D. L. J.; Wickens, P. L.; da Silva, G. V. J. J. Org. Chem. 1995, 60, 5532-5536. (c) Marshall, J. A.; Crute, T. D. III; Hsi, J. D. J. Org. Chem. 1992, 57, 115-123. For SN2' displacements on vinyl aziridines, see: (d) Fujii, N.; Nakai, K.; Tamamura, H.; Ibuka, T. J. Chem Soc. Perkin Trans. 1 1995, 1359-1371. (e) Wipf, P.; Frich, P. C. J. Org. Chem. 1994, 59, 4875-4886.
- (a) Arjona, O.; Fernández de la Pradilla, R.; Mallo, A.; Plumet, J.; Viso, A. Tetrahedron Lett. 1990, 31, 1475-1478.
 (b) Marino, J. P.; Viso, A.; Fernández de la Pradilla, R.; Fernández, P. J. Org. Chem. 1991, 56, 1349-1351.
 (c) Marino, J. P.; de Dios, A.; Anna, L. J.; Fernández de la Pradilla, R. J. Org. Chem. 1996, 61, 109-117.
- (a) Posner, G. H.; Tang, P.W.; Mallamo, J. P. Tetrahedron Lett. 1978, 3995-3998. (b) Okamura, H.;
 Mitsuhira, Y.; Miura, M.; Takei, H. Chem Lett. 1978, 517-520.
- 7. Stevens, C. L.; Farkans, E.; Gillis, B. J. Am. Chem. Soc. 1954, 76, 2695-2698.
- 8. Massad, S. K.; Hawkins, L. D.; Baker, D. C. J. Org. Chem. 1983, 48, 5180-5182.
- 9. All new products reported here have been fully characterized and yields are based on purified compounds obtained by unoptimized procedures. The relative configuration of epoxide 12 was secured by an X-ray diffraction analysis of the chlorohydrin precursor. These results will be described in detail in a full account of this research.
- (a) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017-3020. For reviews, see: (a) Hughes,
 D. L. Org. React. 1992, 42, 335-669. (b) Hughes, D. L. Org. Prep. and Proc. Int. 1996, 28, 127-164.
- Examples of syn SN2' displacements involving organocopper reagents and vinyl oxiranes are scarce and generally involve special substrates or organocopper reagents. See: (a) Hudlicky, T.; Tian, X.; Königsberger, K.; Rouden, J. J. Org. Chem. 1994, 59, 4037-4039. (b) Marshall, J. A.; Sedrani, R. J. Org. Chem. 1991, 56, 5496-5498. (c) Marshall, J. A.; Audia, V. H. J. Org. Chem. 1987, 52, 1106-1113. (d) Marino, J. P.; Fernández de la Pradilla, R.; Laborde, E. J. Org. Chem. 1987, 52, 4898-4913. (e) Ziegler, F. E.; Cady, M. A. J. Org. Chem. 1981, 46, 122-128. For a related syn SN2' displacement on a cyclic epoxy vinyl sulfone with MeLi, see: Saddler, J. C.; Fuchs, P. L. J. Am. Chem. Soc. 1981, 103, 2112-2114.
- For leading references see: (a) Carreño, M. C. Chem. Rev. 1995, 95, 1717-1760. (b) Walker, A. J. Tetrahedron: Asymmetry 1992, 3, 961-968.
- 13. For the sulfur-directed nucleophilic epoxidation of allylic hydroxy vinyl sulfoxide derivatives, see: Fernández de la Pradilla, R.; Manzano, P.; Priego, J. Viso, A.; Martínez-Ripoll, M.; Rodríguez, A., *Tetrahedron Lett.* 1996, in press.

(Received in UK 8 August 1996; revised 10 September 1996; accepted 13 September 1996)